Overview

The STK672-070 is a stepping motor driver hybrid IC that uses power MOSFETs in the output stage. It includes a built-in microstepping controller and is based on a unipolar constant-current PWM system. The STK672-070 supports application simplification and standardization by providing a built-in 4 phase distribution stepping motor controller. It supports five excitation methods: 2 phase, 1-2 phase, W1-2 phase, 2W1-2 phase, and 4W1-2 phase excitations, and can provide control of the basic stepping angle of the stepping motor divided into $1 / 16$ step units. It also allows the motor speed to be controlled with only a clock signal.
The use of this hybrid IC allows designers to implement systems that provide high motor torques, low vibration levels, low noise, fast response, and high-efficiency drive. This product is provided in a smaller package than SANYO's earlier STK672-040 for easier mounting in end products.

Applications

- Facsimile stepping motor drive (send and receive)
- Paper feed and optical system stepping motor drive in copiers
- Laser printer drum drive
- Printer carriage stepping motor drive
- X-Y plotter pen drive
- Industrial robots and other stepping motor applications

Features

- Can implement stepping motor drive systems simply by providing a DC power supply and a clock pulse generator.
<Control Block Features>
- One of five drive types can be selected with the drive mode settings (M1, M2, and M3)
-2 phase excitation drive
-1-2 phase excitation drive
-W1-2 phase excitation drive
-2W1-2 phase excitation drive
-4W1-2 phase excitation drive
- Phase retention even if excitation is switched.
- Provides the MOI phase origin monitor pin.
- The CLK input counter block can be selected to be one of the following by the high/low setting of the M3 input pin.
—Rising edge only
—Both rising and falling edges
Note*: Conditions: $\mathrm{V}_{\mathrm{CC}} 1=24 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=1.5 \mathrm{~A}, 2 \mathrm{~W} 1-2$ drive used.

Continued on next page.

Package Dimensions

unit: mm
4186-SIP15

■ Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
■ SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Continued from preceding page

- The CLK input pin includes built-in malfunction prevention circuits for external pulse noise.
- ENABLE and $\overline{\text { RESET }}$ pins provided. These are Schmitt trigger inputs with built-in $20 \mathrm{k} \Omega$ (typical) pull-up resistors.
- No noise generation due to the difference between the A and B phase time constants during motor hold since external excitation is used.
- Microstepping operation supported even for small motor currents, since the reference voltage Vref can be set to any value between 0 V and $1 / 2 \mathrm{~V}_{\mathrm{CC}} 2$.
<Driver Block>
- External excitation PWM drive allows a wide operating supply voltage range $\left(\mathrm{V}_{\mathrm{CC}} 1=10\right.$ to 45 V$)$ to be used.
- Current detection resistor (0.15Ω) built into the hybrid IC.
- Power MOSFETs for minimal driver loss
- Motor output drive currents I_{OH} up to 1.5 A . (at $\mathrm{Tc}=$ $105^{\circ} \mathrm{C}$)

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	$\mathrm{V}_{\text {CC }} 1$ max	No signal	52	V
Maximum supply voltage 2	$\mathrm{V}_{\mathrm{CC}} 2$ max	No signal	-0.3 to +7.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$ max	Logic input pins	-0.3 to +7.0	V
Phase output current	IOH max	0.5 seconds, single pulse, with $\mathrm{V}_{\mathrm{CC}} 1$ applied.	2.0	A
Repeatable avalanche	Ear max		25	mJ
Power loss	Pd max	$\theta \mathrm{c}-\mathrm{a}=0$	6.5	W
Operating IC Substrate temperature	Tc max		105	${ }^{\circ} \mathrm{C}$
Junction temperature	Tj max		150	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathbf{T a}=\mathbf{2 5}^{\circ} \mathbf{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	$\mathrm{V}_{\mathrm{CC}} 1$	With input signals present	10 to 45	V
Supply voltage 2	$\mathrm{V}_{\mathrm{CC}} 2$	With input signals present	$5 \pm 5 \%$	V
Input voltage	V_{IH}		0 to $\mathrm{V}_{\mathrm{Cc}}{ }^{2}$	V
Phase driver voltage handling	$\mathrm{V}_{\text {DSS }}$	Tr1, 2, 3, and 4 (the A, \bar{A}, B, and \bar{B} outputs)	100 (min)	V
Phase current1	lOH^{1}	Tc $=105^{\circ} \mathrm{C}, \mathrm{CLK} \geq 200 \mathrm{~Hz}$	1.5	A
Phase current2	IOH^{2}	Tc $=80^{\circ} \mathrm{C}, \mathrm{CLK} \geq 200 \mathrm{~Hz}$	1.7	A

Electrical Characteristics at $\mathbf{T c}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}} 1=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \mathbf{2}=5 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Control supply current	I_{CC}	H-IC 6 input, with ENABLE pin held low.		2.1	14	mA
Output saturation voltage	Vsat	$\mathrm{R}_{\mathrm{L}}=12 \Omega$		0.65	1.2	V
Average output current	lo ave	Load: $R=3.5 \Omega / \mathrm{L}=3.8 \mathrm{mH}$ For each phase	0.445	0.5	0.56	A
FET diode forward voltage	Vdf	If $=1 \mathrm{~A}$		1	1.8	V
[Control Inputs]						
Input voltage	V_{IH}	Except for the Vref pin	4			V
	$\mathrm{V}_{\text {IL }}$	Except for the Vref pin			1	V
Input current	$\mathrm{IIH}^{\text {H }}$	Except for the Vref pin	0	1	10	$\mu \mathrm{A}$
	IIL	Except for the Vref pin	125	250	510	$\mu \mathrm{A}$
[Vref Input Pin]						
Input voltage	V_{1}	Pin7	0		2.5	V
Input current	1	Pin7, 2.5-V input	330	415	545	$\mu \mathrm{A}$
[Control Outputs]						
Output voltage	V_{OH}	$\mathrm{I}=-3 \mathrm{~mA}, \mathrm{MOI}$	2.4			V
	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}=+3 \mathrm{~mA}, \mathrm{MOI}$			0.4	V

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
[Current Distribution Ratio (A.B)]						
2W1-2, W1-2, 1-2	Vref	$\theta=1 / 8$		100		\%
2W1-2, W1-2	Vref	$\theta=2 / 8$		92		\%
2W1-2	Vref	$\theta=3 / 8$		83		\%
2W1-2, W1-2, 1-2	Vref	$\theta=4 / 8$		71		\%
2W1-2	Vref	$\theta=5 / 8$		55		\%
2W1-2, W1-2	Vref	$\theta=6 / 8$		40		\%
2W1-2	Vref	$\theta=7 / 8$		21		\%
2	Vref			100		\%
PWM frequency	fc		37	47	57	kHz

[^0]The design target value is shown for the current distribution ratio.

Internal Block Diagram

Test Circuit Diagrams

$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{IL}}$

For loave measurement: Set switch SW1 to the b position, provide the Vref input and switch over switch SW2.
For fc measurement: Set SW1 to the a position, set Vref to 0 V , and switch over switch SW3.
For Icc measurement: Set the ENABLE input to the low level.

Operation Description

2W1-2 Phase Excitation Drive (microstepping operation)

Note: This hybrid IC must be initialized with a power on reset when power is first applied.

[Setting the Motor Current]

The motor current I_{OH} is set by the Vref voltage on the hybrid IC (H-IC) pin 7. The following formula gives the relationship between I_{OH} and Vref.
$\operatorname{RoX}=(\operatorname{Ro} 2 \times 6 \mathrm{k} \Omega) /(\operatorname{Ro} 2+6 \mathrm{k} \Omega)$ \qquad
Vref $=\mathrm{V}_{\mathrm{CC}} 2 \times \mathrm{RoX} /(\mathrm{Ro} 1+\mathrm{RoX})$
$\mathrm{I}_{\mathrm{OH}}=\frac{1}{\mathrm{~K}} \times \frac{\mathrm{Vref}}{\mathrm{Rs}}$
K: 5.16 (Voltage divider ratio), Rs: 0.22Ω (Hybrid IC internal current detection resistor (precision: $\pm 3 \%$))
Applications can use motor currents from the current $(0.05$ to 0.1 A$)$ set by the duty of the frequency set by the oscillator up to the limit of the allowable operating range, $\mathrm{I}_{\mathrm{OH}}=1.5 \mathrm{~A}$

Motor current waveform
A13262
[Function Table]

M2	0	0	1	1	Phase switching clock edge timing
M3	0	1	0	1	
1	2 Mhase excitation	$1-2$ phase excitation	W1-2 phase excitation	2W1-2 phase excitation	Rising edge only
0	$1-2$ phase excitation	W1-2 phase excitation	2W1-2 phase excitation	4 W1-2 phase excitation	Rising and falling edges

	Forward	Reverse
CWB	0	1

ENABLE	Motor current is cut off when low
$\overline{\text { RESET }}$	Active low

Functional Description

External Excitation Chopper Drive Block Description

Since this hybrid IC (H-IC) adopts an external excitation method, no external oscillator circuit is required.
When a high level is input to $ø \mathrm{~A}$ in the basic driver block circuit shown in the figure and the MOSFET is turned on, the comparator + input will go low and the comparator output will go low. Since a set signal with the PWM period will be input, the Q output will go high, and the MOSFET will be turned on as its initial value.
The current I_{ON} flowing in the MOSFET passes through L 1 and generates a potential difference in Rs. Then, when the Rs potential and the Vref potential become the same, the comparator output will invert, and the reset signal Q output will invert to the low level. Then, the MOSFET will be turned off and the energy stored in L1 will be induced in L2 and the current $\mathrm{I}_{\mathrm{OFF}}$ will be regenerated to the power supply. This state will be maintained until the time when an input to the latch circuit set pin occurs.
In this manner, the Q output is turned off and on repeatedly by the reset and set signals, thus implementing constant current control. The resistor and capacitor on the comparator input are spike removal circuit elements and synchronize with the PWM frequency. Since this hybrid IC uses a fixed frequency due to the external excitation method and at the same time also adopts a synchronized PWM technique, it can suppress the noise associated with holding a position when the motor is locked.

Input Pin Functions

Pin No.	Symbol	Function	Pin circuit type
11	CLK	Phase switching clock	Built-in pull-up resistor CMOS Schmitt trigger input
10	CWB	Rotation direction setting (CW/CCW)	Built-in pull-up resistor CMOS Schmitt trigger input
15	ENABLE	Output cutoff	Built-in pull-up resistor CMOS Schmitt trigger input
$8,9,12$	M1, M2, M3	Excitation mode setting	Built-in pull-up resistor CMOS Schmitt trigger input
13	$\overline{\text { RESET }}$	System reset	Built-in pull-up resistor CMOS Schmitt trigger input
7	Vref	Current setting	Input impedance $6 \mathrm{k} \Omega$ (typ.) $\pm 30 \%$

Input Signal Functions and Timing

- CLK (phase switching clock)

Input frequency range: DC to 50 kHz
Minimum pulse width: $10 \mu \mathrm{~s}$
Duty: 40 to 60% (However, the minimum pulse width takes precedence when M3 is high.)
Pin circuit type: Built-in pull-up resistor ($20 \mathrm{k} \Omega$, typical) CMOS Schmitt trigger structure
Built-in multi-stage noise rejection circuit
Function
-When M3 is high or open: The phase excited (driven) is advanced one step on each CLK rising edge.
-When M3 is low: The phase moves on both the rising and falling edges of the CLK signal, for a total of two steps per cycle.

- CWB (Method for setting the rotation direction)

Pin circuit type: Built-in pull-up resistor ($20 \mathrm{k} \Omega$, typical) CMOS Schmitt trigger structure
Function
-When CWB is high: The motor turns in the clockwise direction.
-When CWB is low: The motor turns in the counterclockwise direction.
Notes: When M3 is low, the CWB input must not be changed for about 6.25μ sefore or after a rising or falling edge on the CLK input.

- ENABLE (Controls the on/off state of the $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}$, and $\overline{\mathrm{B}}$ excitation drive outputs and selects either operating or hold as the internal state of this hybrid IC.)
Pin circuit type: Built-in pull-up resistor ($20 \mathrm{k} \Omega$, typical) CMOS Schmitt trigger structure
Function
-When ENABLE is high or open: Normal operating state
-When ENABLE is low: This hybrid IC (H-IC) goes to the hold state and excitation drive output (motor current) is forcibly turned off. In this mode, the hybrid IC (H-IC) system clock is stopped and no inputs other than the reset input have any effect on the hybrid IC (H-IC) state.
- M1, M2, and M3 (Excitation mode and CLK input edge timing selection)

Pin circuit type: Built-in pull-up resistor ($20 \mathrm{k} \Omega$, typical) CMOS Schmitt trigger structure
Function:

M2	0	0	1	1	Phase switching clock edge timing
M3	0	1	0	1	
1	2 phase excitation	$1-2$ phase excitation	W1-2 phase excitation	2W1-2 phase excitation	Rising edge only
0	$1-2$ phase excitation	W1-2 phase excitation	2W1-2 phase excitation	4W1-2 phase excitation	Rising and falling edges

Valid mode setting timing: Applications must not change the mode in the period 5μ s before or after a CLK signal rising or falling edge.

Mode Setting Acquisition Timing

- $\overline{\text { RESET }}$ (Resets all parts of the system.)

Pin circuit type: Built-in pull-up resistor ($20 \mathrm{k} \Omega$, typical) CMOS Schmitt trigger structure
Function:
-All circuit states are set to their initial values by setting the $\overline{\text { RESET }}$ pin low. (Note that the pulse width must be at least $10 \mu \mathrm{~s}$.)
At this time, the A and $\overline{\mathrm{B}}$ phases are set to their origin, regardless of the excitation mode. The output current goes to about 71% after the reset is released.
Notes: When power is first applied to this hybrid IC, Vref must be established by applying a reset. Applications must apply a power on reset when the $\mathrm{V}_{\mathrm{CC}} 2$ power supply is first applied.

- Vref (Sets the current level used as the reference for constant-current detection.)

Pin circuit type: Analog input structure
Function:
-Constant-current control can be applied to the motor excitation current at 100% of the rated current by applying a voltage less than the control system power supply voltage $\mathrm{V}_{\mathrm{CC}} 2$ minus 2.5 V .
-Applications can apply constant-current control proportional to the Vref voltage, with this value of 2.5 V as the upper limit.

Output Pin Functions

Pin No.	Symbol	Function	Pin circuit type
14	Mol	Phase excitation origin monitor	Standard CMOS structure

Output Signal Functions and Timing

- A, $\overline{\mathrm{A}}, \mathrm{B}$, and $\overline{\mathrm{B}}$ (Motor phase excitation outputs)

Function:
-In the 4 phase and 2 phase excitation modes, a 3.75μ s (typical) interval is set up between the A and \bar{A} and B and \bar{B} output signal transition times.

Phase States During Excitation Switching

- Excitation phases before and after excitation mode switching <clockwise direction>

W1-2 phase $\rightarrow 2$ phase

$1-2$ phase $\rightarrow 2$ phase

2 phase $\rightarrow 1-2$ phase

W1-2 phase $\rightarrow 1-2$ phase

$1-2$ phase \rightarrow W1-2 phase

2 phase \rightarrow W1-2 phase

W1-2 phase \rightarrow 2W1-2 phase

$1-2$ phase $\rightarrow 2$ W1-2 phase

$\underline{2}$ phase $\rightarrow 2 \mathrm{~W} 1-2$ phase

Excitation phase immediately before setting the excitation mode

- Excitation phases before and after excitation mode switching <counterclockwise direction>

2 phase $\rightarrow 1-2$ phase

2W1-2 phase $\rightarrow 1-2$ phase

W1-2 phase $\rightarrow 1-2$ phase

$1-2$ phase \rightarrow W1-2 phase

2 phase \rightarrow W1-2 phase

2W1-2 phase \rightarrow W1-2 phase

W1-2 phase \rightarrow 2W1-2 phase

$1-2$ phase \rightarrow 2W1-2 phase

$\underline{2}$ phase $\rightarrow 2$ W1-2 phase

Excitation Time and Timing Charts

- CLK rising edge operation

- CLK rising and falling edge operation

1-2 Phase Excitation Timing Chart ($\mathrm{M} 3=0$)	
M1	
M2	
M3	
CWB	

A13269

Thermal Design

<Hybrid IC (H-IC) Average Internal Power Loss Pd>
The main elements internal to this hybrid IC (H-IC) with large average power losses are the current control devices, the regenerative current diodes, and the current detection resistor. Since sine wave drive is used, the average power loss during microstepping drive can be approximated by applying a waveform factor of 0.64 to the square wave loss during 2 phase excitation.
The losses in the various excitation modes are as follows.

2 phase excitation

$$
\mathrm{Pd}_{2 \mathrm{EX}}=(\mathrm{Vsat}+\mathrm{Vdf}) \cdot \frac{\text { fclock }}{2} \cdot \mathrm{I}_{\mathrm{OH}} \cdot \mathrm{t} 2+\frac{\mathrm{I}_{\mathrm{OH}} \cdot \text { fclock }}{2} \cdot(\mathrm{Vsat} \cdot \mathrm{t} 1+\mathrm{Vdf} \cdot \mathrm{t} 3)
$$

1-2 phase excitation

$$
\mathrm{Pd}_{1-2 \mathrm{EX}}=0.64 \cdot\left\{(\mathrm{Vsat}+\mathrm{Vdf}) \cdot \frac{\text { fclock }}{4} \cdot \mathrm{I}_{\mathrm{OH}} \cdot \mathrm{t} 2+\frac{\mathrm{I}_{\mathrm{OH}} \cdot \mathrm{fclock}}{4} \cdot(\mathrm{Vsat} \cdot \mathrm{t} 1+\mathrm{Vdf} \cdot \mathrm{t} 3)\right\}
$$

W1-2 phase excitation

$$
\mathrm{Pd}_{\mathrm{W} 1-2 \mathrm{EX}}=0.64 \cdot\left\{(\mathrm{Vsat}+\mathrm{Vdf}) \cdot \frac{\mathrm{fclock}}{8} \cdot \mathrm{I}_{\mathrm{OH}} \cdot \mathrm{t} 2+\frac{\mathrm{I}_{\mathrm{OH}} \cdot \mathrm{fclock}}{8} \cdot(\mathrm{Vsat} \cdot \mathrm{t} 1+\mathrm{Vdf} \cdot \mathrm{t} 3)\right\}
$$

2W1-2 phase excitation $\quad \mathrm{Pd}_{2 \mathrm{~W} 1-2 \mathrm{EX}}=0.64 \cdot\left\{(\mathrm{Vsat}+\mathrm{Vdf}) \cdot \frac{\mathrm{fclock}}{16} \cdot \mathrm{I}_{\mathrm{OH}} \cdot \mathrm{t} 2+\frac{\mathrm{I}_{\mathrm{OH}} \cdot \mathrm{fclock}}{16} \cdot(\mathrm{Vsat} \cdot \mathrm{t} 1+\mathrm{Vdf} \cdot \mathrm{t} 3)\right\}$

4W1-2 phase excitation $\quad \mathrm{Pd}_{4 \mathrm{~W} 1-2 \mathrm{EX}}=0.64 \cdot\left\{(\mathrm{Vsat}+\mathrm{Vdf}) \cdot \frac{\mathrm{fclock}}{16} \cdot \mathrm{I}_{\mathrm{OH}} \cdot \mathrm{t} 2+\frac{\mathrm{I}_{\mathrm{OH}} \cdot \mathrm{fclock}}{16} \cdot(\mathrm{Vsat} \cdot \mathrm{t} 1+\mathrm{Vdf} \cdot \mathrm{t} 3)\right\}$

Here, tl and t 3 can be determined from the same formulas for all excitation methods.
$\mathrm{t} 1=\frac{-\mathrm{L}}{\mathrm{R}+0.35} \cdot \ell \mathrm{n}\left(1-\frac{\mathrm{R}+0.35}{\mathrm{~V}_{\mathrm{CC}} 1} \cdot \mathrm{I}_{\mathrm{OH}}\right) \quad \mathrm{t} 3=\frac{-\mathrm{L}}{\mathrm{R}} \cdot \ell \mathrm{n}\left(\frac{\mathrm{V}_{\mathrm{CC}} 1+0.35}{\mathrm{I}_{\mathrm{OH}} \cdot \mathrm{R}+\mathrm{V}_{\mathrm{CC}} 1+0.35}\right)$
However, the formula for t 2 differs with the excitation method.

2 phase excitation $\quad \mathrm{t} 2=\frac{2}{\text { fclock }}-(\mathrm{t} 1+\mathrm{t} 3) \quad 1-2$ phase excitation $\quad \mathrm{t} 2=\frac{3}{\text { fclock }}-\mathrm{t} 1$
W1-2 phase excitation $\mathrm{t} 2=\frac{7}{\text { fclock }}-\mathrm{t} 1 \quad \begin{aligned} & \text { 2W1-2 phase excitation } \\ & \text { 4W1-2 phase excitation }\end{aligned} \mathrm{t} 2=\frac{15}{\text { fclock }}-\mathrm{t} 1$

Motor Phase Current Model (2 Phase Excitation)

[^1]<Determining the Size of the Hybrid IC (H-IC) Heat Sink>
Determine $\theta \mathrm{c}-\mathrm{a}$ for the heat sink from the average power loss determined in the previous item.
$\theta \mathrm{c}-\mathrm{a}=\frac{\mathrm{Tc} \max -\mathrm{Ta}}{\mathrm{Pd}_{\mathrm{EX}}}\left[{ }^{\circ} \mathrm{C} / \mathrm{W}\right]$
Tc max: Hybrid IC $(\mathrm{H}-\mathrm{IC})$ substrate temperature $\left({ }^{\circ} \mathrm{C}\right)$
Ta: Application internal temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{Pd}_{\mathrm{EX}}$: Hybrid $\mathrm{IC}(\mathrm{H}-\mathrm{IC})$ internal average loss (W)

Determine $\theta \mathrm{c}$-a from the above formula and then size S (in cm^{2}) of the heat sink from the graphs shown below.
The ambient temperature of the device will vary greatly according to the air flow conditions within the application. Therefore, always verify that the size of the heat sink is adequate to assure that the Hybrid IC (H-IC) back surface (the aluminum plate side) will never exceed a $\mathrm{Tc} \max$ of $105^{\circ} \mathrm{C}$, whatever the operating conditions are.

Next we determine the usage conditions with no heat sink by determining the allowable hybrid IC (H-IC) internal average loss from the thermal resistance of the hybrid IC (H-IC) substrate, namely $25.5^{\circ} \mathrm{C} / \mathrm{W}$.
For a Tc max of $105^{\circ} \mathrm{C}$ at an ambient temperature of $50^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{Pd}_{\mathrm{EX}}=\frac{100-50}{25.5}=2.15 \mathrm{~W} \\
& \mathrm{Pd}_{\mathrm{EX}}=\frac{100-40}{25.5}=2.54 \mathrm{~W}
\end{aligned}
$$

For a Tc max of $105^{\circ} \mathrm{C}$ at an ambient temperature of $40^{\circ} \mathrm{C}$

This hybrid IC (H-IC) can be used with no heat sink as long as it is used at operating conditions below the losses listed above. (See $\Delta \mathrm{Tc}-\mathrm{P}_{\mathrm{d}}$ curve in the graph.)
<Hybrid IC (H-IC) internal power element (MOSFET) junction temperature calculation>
The junction temperature, Tj , of each device can be determined from the loss Pds in each transistor and the thermal resistance $\theta \mathrm{j}$-c.

$$
\mathrm{Tj}=\mathrm{Tc}+\theta \mathrm{j}-\mathrm{c} \times \mathrm{Pds}\left({ }^{\circ} \mathrm{C}\right)
$$

Here, we determine Pds, the loss for each transistor, by determining $\mathrm{Pd}_{\mathrm{EX}}$ in each excitation mode.

$$
\mathrm{Pds}=\mathrm{Pd} / 4
$$

Since the average loss includes the loss of the current detection resistor, we take that voltage drop into consideration in the calculation.

$$
\begin{aligned}
& \mathrm{Vsat}=\mathrm{I}_{\mathrm{OH}} \cdot \mathrm{Ron}+\mathrm{I}_{\mathrm{OH}} \cdot \mathrm{Rs} \\
& \mathrm{Vdf}=\mathrm{Vdf}+\mathrm{I}_{\mathrm{OH}} \cdot \mathrm{Rs}
\end{aligned}
$$

The steady-state thermal resistance of a power MOSFET is $19.2^{\circ} \mathrm{C} / \mathrm{W}$.

Vsat - IOH

Vdf - IOH

Notes

- The current ranges shown above apply when the output voltage is not in the avalanche range.
- The operating substrate temperature Tc values shown above are measured during motor operation. Since Tc varies with the ambient temperature Ta , the value of I_{OH}, and whether I_{OH} is continuous or intermittent, it must be measured in an actual operating system.
\square Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

■ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 2003. Specifications and information herein are subject to change without notice.

[^0]: Note: A constant-voltage power supply must be used.

[^1]: fclock: CLK input frequency (Hz)
 Vsat: The voltage drop of the power MOSFET and the current detection resistor (V)
 Vdf : The voltage drop of the body diode and the current detection resistor (V)
 I_{OH} : Phase current peak value (A)
 t1: Phase current rise time (s)
 $V_{\text {Cc }}$: Supply voltage applied to the motor (V)
 t2: Constant-current operating time (s)
 L: Motor inductance (H)
 t3: Phase switching current regeneration time (s)
 R: Motor winding resistance (Ω)

